A structure-preserving split finite element discretization of the split wave equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Wave Equations Near Seawalls by Finite Element Method

A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...

متن کامل

The edge tenacity of a split graph

The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...

متن کامل

A KIND OF F-INVERSE SPLIT MODULES

Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct...

متن کامل

Correspondences with Split Polynomial Equations

We introduce endomorphisms of special jacobians and show that they satisfy polynomial equations with all integer roots which we compute. The eigen-abelian varieties for these endomorphisms are generalizations of Prym-Tyurin varieties and naturally contain special curves representing cohomology classes which are not expected to be represented by curves in generic abelian varieties.

متن کامل

Finite element discretization of a thermoelastic beam

We consider the steady case of a nonlinear model for a thermoelastic beam that can enter in contact with obstacles. We first prove the well-posedness of this problem. Next, we propose a finite element discretization and perform the a priori and a posteriori analysis of the discrete problem. Some numerical experiments confirm the interest of this approach. Résumé: Nous considérons le cas station...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2018

ISSN: 0096-3003

DOI: 10.1016/j.amc.2017.12.035